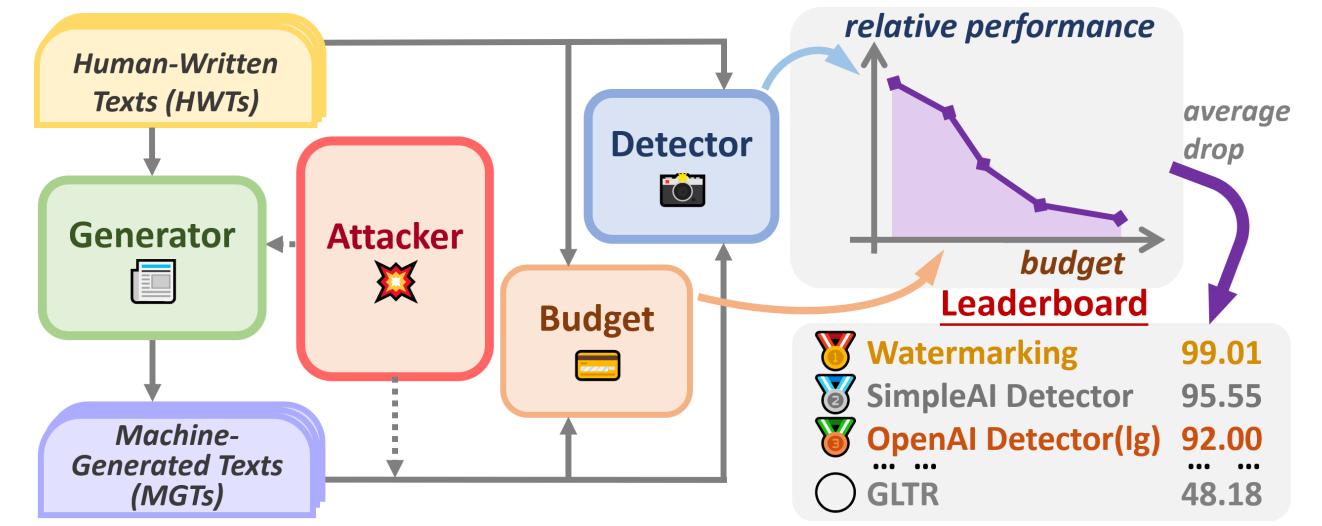
Stumbling Blocks: Stress Testing the Robustness of **Machine-Generated Text Detectors Under Attacks**



Yichen Wang^{2,*}, Shangbin Feng¹, Abe Bohan Hou³, Xiao Pu⁴, Chao Shen², Xiaoming Liu², Yulia Tsvetkov¹, Tianxing He¹ * Done while interning at UW.

¹ Paul G. Allen School of CSE, University of Washington ² Xi'an Jiaotong University ³ Johns Hopkins University ⁴ Peking University

Comprehensively **benchmark and study** the robustness of 8 prevalent machine-generated text detectors under 12 malicious attacks. 🟆 leaderboard 🛱 defect analysis 🛛 🖓 interpretation 🜘 defense patch

Scope: - Attacker does not have any knowledge/access to the detectors;

- Attacker only has limited access to the generators (OAI panel-like);
- Apply each attack on different perturbation levels, termed as budgets.

Detectors: Fine-Tuned Detector (OAI detector, tuned DeBERTa ...) Watermark-Based Detector (Kirchenbauer et al. 2023a) Metric-Based Detector (GLTR, Rank, DetectGPT ...) **Budgets**: Editing - Levenshtein Edit Distance, Jaro Similarity | Quality – Perplexity, MAUVE | Semantics BERTScore, BARTScore, Cos. Similarity, etc. Generators: GPT-J-6B, LlaMA-2-7B-hf, GPT-4, Davinci-003, LlaMA-1, etc. \Rightarrow All the generators shared **similar** results

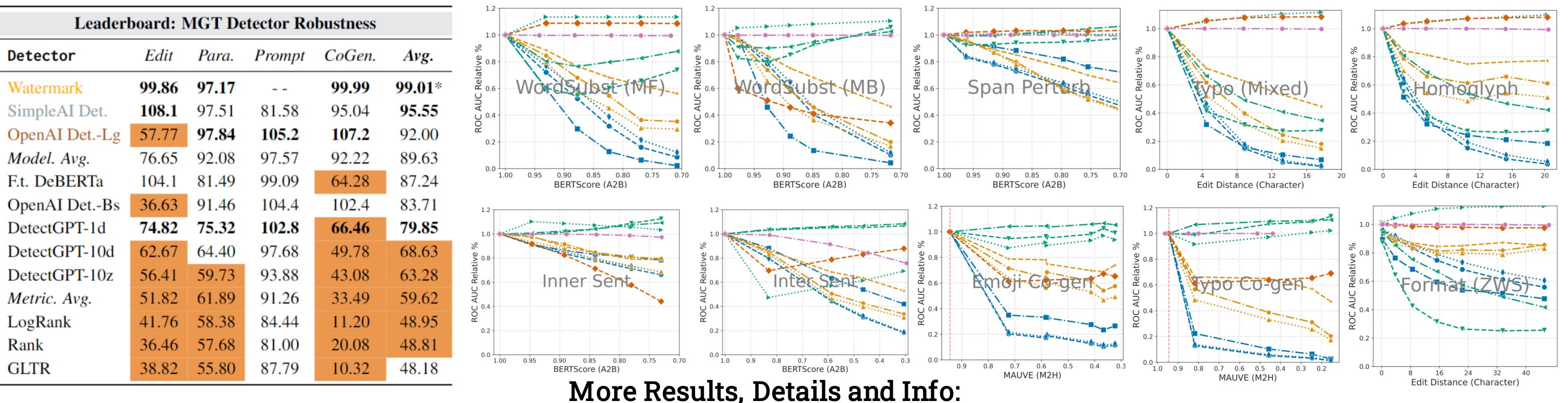
under attacks.

Editing Attacks: Typo Insertion, Homoglyph Alteration, Format Character Edit. **Paraphrasing Attacks**: cover word- to paragraph-level Synonyms Substitution, Span Perturbation, Inner-Sentence Paraphrase, Inter-Sentence Paraphrase. lower-level perturbations show greater attack success than higher-level perturbations at the same budget.

for watermarking, inter-sentence paraphrasing is the only effective attack. 😤 😜 **Co-Generating Attacks**: perturbs the generated tokens at each recurrent step with some designed rules. E.g., co-gen. typo 💥, emoji.

metric-based methods perform the worst. Most f.t. detectors fail.

Prompting Attacks: Prompt Paraphrasing, ICL, Character-Substituted Generation 🗱 .


Takeaways (b) Can the current MGT detector robustly detect?

- Almost none of the existing detectors remains robust under all attacks. Averaging all detectors, the performance drops by 35% across all attacks.
 - E.g., about 2 to 6 character editing by typo insertion can severely deceive metric-based detectors (e.g., DetectGPT), to perform worse than a random prediction. (average length is around 120 tokens)
- Watermarking performs best to its applicable attacks, but still fails on *inter-sentence paraphrasing* attacks, etc.
- Model-based detectors are more robust than metric-based ones in most cases. (Among which SimpleAI det. is best.)

Experiment Results: Leaderboard

Leaderboard: MGT Detector Robustness					
Detector	Edit	Para.	Prompt	CoGen.	Avg.
Watermark	99.8 6	97.17		99.99	99.01*
SimpleAI Det.	108.1	97.51	81.58	95.04	95.55
OpenAI DetLg	57.77	97.84	105.2	107.2	92.00
	76.65	02.00	07.57	00.00	00 (2

Experiment Results: Performance Degradation

Personal News: I'll be a Ph.D. student at UChicago this fall, to be advised by Prof. Mina Lee and Prof. Ari Holtzman. New papers are coming up! **>**